"GENETT ™" TECHNOLOGY

GENETT™ Technology - Process Line Family

2 CO₂ decomposition Process

3

4

1

Laboratory & Industrial Units

Deployments variants

CHRONOLOGY

The **8-year cycle** of studying the impact of **physical influence in percussion devices**, whereby special conditions of supersonic flow of various gases are created, provided an opportunity to accumulate a large array of experimental data.

Based on experimental data processing, a theory was developed, which was used to further model and design specific technological equipment.

A line of processes under the general name **GENETT** [™] has been created and experimentally tested. Design and technological documentation for pilot and industrial installations have been developed. **Equipment for the implementation of the technology has been manufactured and is operating** (laboratory installation). The technology is patent pending.

Main characteristics of the GENETT ™ technology

A specially designed and inflicted physical impact on the molecules of gases and liquids, whereby the energy required for molecule dissociation is multiple times lower than the binding energy in a given molecule, which initiates:

- Deformation and disintegration of molecules into atoms, followed by molecular rearrangement, elemental synthesis and the release of energy equal to or exceeding the binding energy in the molecule.
- Changing the physical and chemical properties of the original molecule, while maintaining the atomic mass number;

PARTI

GENETT ™ TECHNOLOGY

CO₂ decomposition process

Decomposition of CO2 molecules

occurs in a

non-equilibrium discharge plasma

created and maintained

via a shock wave

MIN

Whereby the following conditions are created:

• Hypersonic stream of a mixture of CO₂, nitrogen, oxygen, subjected to prior detonation and the orchestration of the subsequent phase of standing pressure waves. Thus, the gas mixture activated in the (wave's) antinode enters the node, where it experiences a pressure difference exceeding the point of its stability and then disintegrates into fragments and electrons (plasma);

• Deceleration followed by acceleration of the stream of the substance consisting of molecules, fragments of molecules with the creation of a tribo-static effect and addition of electrons and ions to the plasma structure;

This mechanism provides for the decomposition process to be carried out at low gas temperatures, which is of higher energy efficiency than thermal dissociation under equilibrium conditions

munturnun

 $2CO_2 = 2CO + O_2$ $CO_2 = C + O_2$ $2CO_2 = 2N_2 + O_2 + H_2$

The possible reactions of CO₂ molecules with GENNET Technology

MAIN TECHNICAL PARAMETERS OF UPGRADED LABORATORY UNIT

El. energy **Conversion rate** consumption per Content of CO₂ (%) 1t of CO_2 Air 450 ppm 100 % ... Flue gas 3% - 15% 2680 – 5394 kW 100 % (direct) **Carbon Capture** 100 % >15% - 50% 657 – 1818 kW Equipment

Laboratory Unit

10

Mnemonic diagram of the process control system

3D VIEW

SOUTH-EAST ISOMETRY

VIEW FROM ABOVE

Reactor

Vacuum Pumps

Separator

Standard Pumps

GENETT deployment possibility after Carbon Capture equipment

GENETT deployment possibility without Carbon Capture equipment

Carbon pricing

EU ETS (European Union Emissions Trading System) carbon prices

EUA (EU ETS) Futures Prices

